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Abstract. In this paper, we propose a new approach for domain gener-
alization by exploiting the low-rank structure from multiple latent source
domains. Motivated by the recent work on exemplar-SVMs, we aim to
train a set of exemplar classifiers with each classifier learnt by using only
one positive training sample and all negative training samples. While
positive samples may come from multiple latent domains, for the posi-
tive samples within the same latent domain, their likelihoods from each
exemplar classifier are expected to be similar to each other. Based on
this assumption, we formulate a new optimization problem by introduc-
ing the nuclear-norm based regularizer on the likelihood matrix to the
objective function of exemplar-SVMs. We further extend Domain Adap-
tation Machine (DAM) to learn an optimal target classifier for domain
adaptation. The comprehensive experiments for object recognition and
action recognition demonstrate the effectiveness of our approach for do-
main generalization and domain adaptation.

Keywords: Latent domains, domain generalization, domain adapta-
tion, exemplar-SVMs.

1 Introduction

Domain adaptation techniques, which aim to reduce the domain distribution
mismatch when the training and testing samples come from different domains,
have been successfully used for a broad range of vision applications such as
object recognition and video event recognition [23,17,16,10,11,12,6,7,24]. As a
related research problem, domain generalization differs from domain adapta-
tion because it assumes the target domain samples are not available during the
training process. Without focusing on the generalization ability on the specific
target domain, domain generalization techniques aim to better classify testing
data from any unseen target domain [26,22]. Please refer to Section 2 for a brief
review of existing domain adaptation and domain generalization techniques.

For visual recognition, most existing domain adaptation methods treat each
dataset as one domain [23,17,16,10,11,12,6,7,24]. However, the recent works
show the images or videos in one dataset may come from multiple hidden
domains[20,15]. In [20], Hofffman et al. proposed a constrained clustering method
to discover the latent domains and also extended [23] for multi-domain adapta-
tion by learning multiple transformation matrices. In [15], Gong et al. partitioned
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the training samples from one domain into multiple domains by simultaneously
maximizing distinctiveness and learnability. However, it is a non-trivial task to
discover the characteristic latent domains by explicitly partitioning the training
samples into multiple clusters because many factors (e.g., pose and illumination)
overlap and interact in images and videos in complex ways [15].

In this work, we propose a new approach for domain generalization by explic-
itly exploiting the intrinsic structure of positive samples from multiple latent do-
mains without partitioning the training samples into multiple clusters/domains.
Our work builds up the recent ensemble learning method exemplar-SVMs, in
which we aim to train a set of exemplar classifiers with each classifier learnt by
using one positive training sample and all negative training samples. While pos-
itive samples may come from multiple latent domains characterized by different
factors, for the positive samples captured under similar conditions (e.g., frontal-
view poses), their likelihoods from each exemplar classifier are expected to be
similar to each other. Using the likelihoods from all the exemplar classifiers as
the feature of each positive sample, we assume the likelihood matrix consisting
of the features of all positive samples should be low-rank in the ideal case. Based
on this assumption, we formulate a new objective function by introducing a nu-
clear norm based regularizer on the likelihood matrix into the objective function
of exemplar-SVMs in order to learn a set of more robust exemplar classifiers for
domain generalization and domain adaptation.

To solve the new optimization problem, we further introduce an intermediate
variable Fmodelling the ideal likelihood matrix, and arrive at a relaxed objective
function. Specifically, we minimize the objective function of exemplar-SVMs and
the nuclear norm of the ideal likelihood matrix F as well as the approximation
error between F and the likelihood matrix. Then, we develop an alternating
optimization algorithm to iteratively solve the ideal likelihood matrix F and
learn the exemplar classifiers.

During the testing process, we can directly use the whole or a selected set
of learnt exemplar classifiers for the domain generalization task when the tar-
get domain samples are not available during the training process. For domain
adaptation, we propose an effective method to re-weight the selected set of ex-
emplar classifiers based on the Maximum Mean Discrepancy (MMD) criterion,
and we further extend the Domain Adaptation Machine (DAM) method to learn
an optimal target classifier. We conduct comprehensive experiments for object
recognition and human activity recognition using two datasets and the results
clearly demonstrate the effectiveness of our approach for domain generalization
and domain adaptation.

2 Related Work

Domain adaptation methods can be roughly categorized into feature based ap-
proaches and classifier based approaches. The feature based approaches aim to
learn domain invariant features for domain adaptation. Kulis et al. [23] proposed
a distance metric learning method to reduce domain distribution mismatch by
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learning asymmetric nonlinear transformation. Gopalan et al. [17] and Gong et
al. [16] proposed two domain adaptation methods by interpolating intermediate
domains. To reduce the distribution mismatch, some recent approaches learnt a
domain invariant subspace [2] or aligned two subspaces from both domains [14].

Classifier based approaches directly learn the classifiers for domain adapta-
tion, among which SVM based approaches are the most popular ones. Huang
et al. [21] proposed a domain adaptation approach by re-weighting the source
domain samples and then learning a weighted SVM classifier with the learnt
weights. Duan et al. [10] proposed a new method called Adaptive MKL based
on multiple kernel learning (MKL) [32], and a multi-domain adaptation method
by selecting the most relevant source domains [13]. The work in [3] developed
an approach to iteratively learn the SVM classifier by labeling the unlabeled
target samples and simultaneously removing some labeled samples in the source
domain.

There are a few works specifically designed for domain generalization.
To enhance the domain generalization ability, Muandet et al. proposed to
learn new domain invariant feature representations [26]. Given multiple source
datasets/domains, Khosla et al. [22] proposed an SVM based approach, in which
the learnt weight vectors that are common to all datasets can be used for domain
generalization.

Our work is more related to the recent works for discovering latent domains
[20,15]. In [20], a clustering based approach is proposed to divide the source do-
main into different latent domains. In [15], the MMD criterion is used to partition
the source domain into distinctive latent domains. However, their methods need
to decide the number of latent domains beforehand. In contrast, our method ex-
ploits the low-rank structure from latent domains without requiring the number
of latent domains. Moreover, we directly learn the exemplar classifiers without
partitioning the data into clusters/domains.

Our work builds up the recent work on exemplar-SVMs [25]. In contrast
to [25], we introduce a nuclear norm based regularizer on the likelihood ma-
trix in order to exploit the low-rank structure from latent domains for domain
generalization. In multi-task learning, the nuclear norm based regularizer is also
introduced to enforce the related tasks share similar weight vectors when learning
the classifiers for multiple tasks [1,5]. However, their works assume the training
and testing samples come from the same distribution without considering the
domain generalization or domain adaptation tasks. Moreover, our regularizer is
on the likelihood matrix such that we can better exploit the structure of positive
samples from multiple latent domains.

3 Low-Rank Exemplar-SVMs

In this section, we introduce the formulation of our low rank exemplar-SVMs
as well as the optimization algorithm. For ease of representation, in the remain-
der of this paper, we use a lowercase/uppercase letter in boldface to represent
a vector/matrix. The transpose of a vector/matrix is denoted by using the su-
perscript ′. A = [aij ] ∈ R

m×n defines a matrix A with aij being its (i, j)-th
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element for i = 1, . . . ,m and j = 1, . . . , n. The element-wise product between
two matrices A = [aij ] ∈ R

m×n and B = [bij ] ∈ R
m×n is defined as C = A ◦B,

where C = [cij ] ∈ R
m×n and cij = aijbij .

3.1 Formulation

In the exemplar-SVMs model, each exemplar classifier is learnt by using one
positive training sample and all the negative training samples. Let S = S+ ∪S−

denote the set of training samples, in which S+ = {s+1 , . . . , s+n } is the set of
positive training samples, and S− = {s−1 , . . . , s−m} is the set of negative training
samples. Each training sample s+ or s− is a d-dimensional column vector, i.e.,
s+, s− ∈ R

d. In this work, we use the logistic regression function for prediction.
Given any sample t ∈ R

d, the prediction function can be written as:

p(t|wi) =
1

1 + exp(−w′
it)

, (1)

where wi ∈ R
d is the weight vector in the i-th exemplar classifier trained by

using the positive training sample s+i and all negative training samples1. By
defining a weight matrix W = [w1, . . . ,wn] ∈ R

d×n, we formulate the learning
problem as follows,

min
W

J(W) = min
W

‖W‖2F + C1

n∑

i=1

l(wi, s
+
i ) + C2

n∑

i=1

m∑

j=1

l(wi, s
−
j ), (2)

where ‖ · ‖F is the Frobenius norm of a matrix, C1 and C2 are the tradeoff
parameters analogous to C in SVM, and l(w, s) is the logistic loss, which is
defined as:

l(wi, s
+
i ) = log(1 + exp(−w′

is
+
i )), (3)

l(wi, s
−
j ) = log(1 + exp(w′

is
−
j )). (4)

Now we consider how to discover the latent domains in the training data.
Intuitively, if there are multiple latent domains in the training data, the positive
training samples should also come from several latent domains. For the positive
samples captured under similar conditions (e.g., frontal-view poses), their like-
lihoods from each exemplar classifier are expected to be similar to each other.
Using the likelihoods from all the exemplar classifiers as the feature of each pos-
itive sample, we assume the likelihood matrix consisting of the likelihoods of
all positive samples should be low-rank in the ideal case. Formally, we denote
the likelihood matrix as G(W) = [gij ] ∈ R

n×n, where each gij = p(s+i |wj) is
the likelihood of the i-th positive training sample by using the j-th exemplar
classifier. To exploit those latent domains, we thus enforce the prediction matrix

1 Although we do not explicitly use the bias term in the prediction, in our experiments
we append 1 to the feature vector of each training sample.



632 Z. Xu et al.

G(W) to be low-rank when we learn those exemplar-SVMs, namely, we arrive
at the following objective function,

min
W

J(W) + λ‖G(W)‖∗, (5)

where we use the nuclear norm based regularizer ‖G(W)‖∗ to approximate the
rank of G(W). It has been shown that the nuclear norm is the best convex
approximation of the rank function over the unit ball of matrices [27]. However,
it is a nontrivial task to solve the problem in (5), because the last term is a
nuclear norm based regularizer on the likelihood matrix G(W) and G(W) is a
non-linear term w.r.t. W.

To solve the optimization problem in (5), we introduce an intermediate matrix
F ∈ R

n×n to model the ideal G(W) such that we can decompose the last
term in (5) into two parts: on one hand, we expect the intermediate matrix F
should be low-rank as we discussed above; on the other hand, we enforce the
likelihood matrix G(W) to be close to the intermediate matrix F. Therefore, we
reformulate the objective function as follows,

min
W,F

J(W) + λ1‖F‖∗ + λ2‖F−G(W)‖2F , (6)

which can be solved by alternatingly optimizing two subproblems w.r.t. W and
F. Specifically, the optimization problem w.r.t. W does not contain the nuclear
norm based regularizer, which makes the optimization much easier. Also, the
nuclear norm based regularizer only depends on the intermediate matrix F rather
than a non-linear term w.r.t.W (i.e., the likelihood matrixG(W)) as in (5), thus
the optimization problem w.r.t. F can be readily solved by using the Singular
Value Threshold (SVT) method [4] (see Section 3.2 for the details).

Discussions: To better understand our proposed approach, in Figure 1, we
show an example of the learnt likelihood matrix G(W) from the “check watch”
category in the IXMAS multi-view dataset by using Cam 0 and Cam 1 as the
source domain. After using the nuclear norm based regularizer, we observe the
block diagonal property of the likelihood matrix G(W) in Figure 1(a). In Fig-
ure 1(b), we also display some frames from the videos corresponding to the two
blocks with large values in G(W). We observe that the videos sharing higher
values in the matrix G(W) are also visually similar to each other. For example,
the first two rows in Figure 1(b) are the videos from similar poses. More inter-
estingly, we also observe our algorithm can group similar videos from different
views in one block (e.g., the last three rows in Figure 1(b) are the videos from
the same actor), which demonstrates it is beneficial to exploit the latent source
domains by using our approach.

3.2 Optimization

In this section, we discuss how to optimize the problem in (6). We optimize (6)
by iteratively updating W and F. The two subproblems w.r.t. W and F are
described in detail as follows.
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Fig. 1. An illustration of the likelihood matrix G(W), where we observe the block
diagonal property of G(W) in (a). The frames from the videos corresponding to the
two blocks with large values in G(W) are also visually similar to each other in (b).

Update W: When F is fixed, the subproblem w.r.t. W can be written as,

min
W

J(W) + λ2‖G(W)− F‖2F , (7)

where the matrix F is obtained at the k-th iteration, and G(W) is defined
as in Section 3.1. We optimize the above subproblem by using the gradient
descent technique. Let us respectively define S1 = [s+1 , . . . , s

+
n ] ∈ R

d×n and
S2 = [s−1 , . . . , s

−
m] ∈ R

d×m as the data matrices of positive and negative training
samples, and also denote H(W) = ‖G(W) − F‖2F . Then, the gradients of the
two terms in (7) can be derived as follows,

∂J(W)

∂W
= 2W + C1S1(P1 − I) + C2S2P2, (8)

∂H(W)

∂W
= 2S1 (G(W) ◦ (11′ −G(W)) ◦ (G(W)− F)) , (9)

where P1 = diag
(
p(s+i |wi)

)
∈ R

n×n is a diagonal matrix with each diagonal
entry being the prediction on one positive sample by using its corresponding
exemplar classifier, P2 = [p(s−i |wj)] ∈ R

m×n is the prediction matrix on all neg-
ative training samples by using all exemplar classifiers, I ∈ R

n×n is an identity
matrix, and 1 ∈ R

n is a vector with all entries being 1.

Update F: When W is fixed, we can calculate the matrix G = G(W) at first,
then the subproblem w.r.t. F becomes,

min
F

λ1‖F‖∗ + λ2‖F−G‖2F , (10)

which can be readily solved by using the singular value thresholding (SVT)
method [4,31]. Specifically, let us denote the singular value decomposition of
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Algorithm 1. Optimization for Low-rank Exemplar-SVMs (LRE-SVMs)

Input: Training data S , and the parameters C1, C2, λ1, λ2.
1. Initialize W←W0, where W0 is obtained by solving (2).
2. repeat
3. Calculate the likelihood matrix G(W) based on the current W.
4. Solve for F by optimizing the problem in (10) with the SVT method.
5. Update W by solving the problem in (7) with the gradient descent method.
6. until The objective converges or the maximum number of iterations is reached.
Output: The weight matrix W.

G as G = UΣV′, where U,V ∈ R
n×n are two orthogonal matrices, and

Σ = diag(σi) ∈ R
n×n is a diagonal matrix containing all the singular values.

The singular value thresholding operator on G can be represented as UD(Σ)V′,
where D(Σ) = diag((σi− λ1

2λ2
)+), and ( · )+ is a thresholding operator by assign-

ing the negative elements to be zeros.

Algorithm: We summarize the optimization procedure in Algorithm 1 and
name our method as Low-rank Exemplar-SVMs (LRE-SVMs). Specifically, we
first initialize the weight matrix W as W0, where W0 is obtained by solving the
traditional exemplar-SVMs formulation in (2). Then we calculate the prediction
matrix G(W) by applying the learnt classifiers on all positive samples. Next, we
obtain the matrix F by solving the problem in (10) with the SVT method. After
that, we use the gradient descent method to update the weight matrix W. The
above steps are repeated until the objective converges.

4 Ensemble Exemplar Classifiers

After training the low-rank exemplar-SVMs as described in Section 3.1, we ob-
tain n exemplar classifiers. To predict the test data, we discuss how to effectively
use those learnt classifiers in two situations. One is the domain generalization
scenario, where the target domain samples are not available during the training
process. And the other one is the domain adaptation scenario, where we have
unlabeled data in the target domain during the training process.

4.1 Domain Generalization

In the domain generalization scenario, we have no prior information about the
target domain. A simple way is to equally fuse those n exemplar classifiers. Given
any test sample t, the prediction p(t|W) can be calculated as,

p(t|W) =
1

n

n∑

i=1

p(t|wi), (11)

where p(t|wi) is the prediction from the i-th exemplar classifier.
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Recall the training samples may come from several latent domains, a better
way is to only use the exemplar classifiers in the latent domain which the test
data likely belongs to. As mentioned before, on one hand, an exemplar classifier
tends to output relatively higher prediction scores for the positive samples from
the same latent domain, and relatively lower prediction scores for the positive
samples from different latent domains; on the other hand, all exemplar classifiers
are expected to output low prediction scores for the negative samples. Therefore,
given the test sample t during the test process, it is beneficial to fuse only the
exemplar classifiers that output higher predictions, such that we output a higher
prediction score if t is positive, and a low prediction score if t is negative. Let us
define T (t) = { i | p(t|wi) is one of the top K prediction scores for i = 1, . . . , n}
as the set of the indices of those selected exemplar classifiers, then the prediction
on this test sample can be obtained as,

p(t|W) =
1

K

∑

i:i∈T (t)

p(t|wi), (12)

where K is the predefined number of exemplar classifiers that output high pre-
diction scores for the test sample t.

4.2 Domain Adaptation

When we have unlabeled data in the target domain during the training process,
we can further assign different weights to the learnt exemplar classifiers to better
fuse the exemplar classifiers for predicting the test data from the target domain.
Intuitively, when the training data of one exemplar classifier is closer to the
target domain, we should assign a higher weight to this classifier and vice versa.
Let us denote the target domain samples as {t1, . . . , tu}, where u is the number
of samples in the target domain. Based on the Maximum Mean Discrepancy
(MMD) criterion [18], we define the distance between the training data of one
exemplar classifier and the target domain as follows,

di = ‖ 1

n+m

⎛

⎝nφ(s+i ) +

m∑

j=1

φ(s−j )

⎞

⎠− 1

u

u∑

j=1

φ(tj)‖2, (13)

where φ(·) is a nonlinear feature mapping function induced by the Gaussian
kernel. We assign a higher weight n to the positive sample s+i when calculating
the mean of source domain samples, since we only use one positive sample for
training the exemplar classifier at each time. In other words, we duplicate the
positive sample s+i for n times and then combine the duplicated positive samples
with all the negative samples to calculate the distance with the target domain.

With the above distance, we then obtain the weight for each exemplar classifier
by using the RBF function as vi = exp(−di/σ), where σ is the bandwidth
parameter, and is set to be the median value of all distances. Then, the prediction
on a test sample t can be obtained as,

p(t|W) =
∑

i:i∈T (t)

ṽip(t|wi), (14)
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where T (t) is defined as in Section 4.1, and ṽi = vi/
∑

i:i∈T (t) vi.
One potential drawback with the above ensemble method is that we need to

perform the predictions for n times, and then fuse the top K prediction scores.
Inspired by Domain Adaptation Machine [13], we propose to learn a single target
classifier on the target domain by leveraging the predictions from the exemplar
classifiers. Specifically, let us denote the target classifier as f(t) = w̃′φ(t) + b.
We formulate our learning problem as follows,

min
w̃,b,ξi,ξ∗i ,f

1

2
‖w̃‖2 + C

u∑

i=1

(ξi + ξ∗i ) +
λ

2
Ω(f), (15)

s.t. w̃′φ(ti) + b− fi ≤ ε+ ξi, ξi ≥ 0, (16)

fi − w̃′φ(ti)− b ≤ ε+ ξ∗i , ξ∗i ≥ 0, (17)

where f = [f1, . . . , fu]
′ is an intermediate variable, λ and C are the tradeoff

parameters, ξi and ξ∗i are the slack variables in the ε-insensitive loss similarly as
in SVR, and ε is a predifined small positive value in the ε-insensitive loss. The
regularizer Ω(f) is a smoothness function defined as follows,

Ω(f) =

u∑

j=1

∑

i:i∈T (tj)

ṽi (fj − p(tj |wi))
2
, (18)

where we enforce each intermediate variable fj to be similar to the prediction
scores of the selected exemplar classifiers in T (tj) for the target sample tj .
In the above problem, we use the ε-insensitive loss to enforce the prediction
score from target classifier f(tj) = w̃′φ(tj) + b to be close to the intermediate
variable fj . At the same time, we also use a smoothness regularizer to enforce
the intermediate variable fj to be close to the prediction scores of the selected
exemplar classifiers in T (tj) for the target sample tj . Intuitively, when ṽi is
large, we enforce the intermediate variable fj to be closer to p(tj |wi), and vice
versa. Recall the weight ṽi models the importance of the i-th exemplar classifier
for predicting the target sample, we expect the learnt classifier f(t) performs
well for predicting the target domain samples.

By introducing the dual variables α = [α1, . . . , αu]
′ and α∗ = [α∗

1, . . . , α
∗
u]

′

for the constraints in (16) and (17), we arrive at its dual form as follows,

min
α,α∗

1

2
(α−α∗)K̃(α−α∗) + p′(α−α∗) + ε1′

u(α+α∗), (19)

s.t. 1′α = 1′α∗,0 ≤ α,α∗ ≤ C1, (20)

where K̃ = K + 1
λI ∈ R

u×u with K being the kernel matrix of the target do-
main samples, p = [p(t1|W), . . . , p(tu|W)]′ with each entry p(tj |W) defined
in (14) being the “virtual label” for the target sample tj as in DAM [13]. In
DAM [13], the virtual labels of all the target samples are obtained by fusing the
same set of source classifiers. In contrast, we use the predictions from different
selected exemplar classifiers to obtain the virtual labels of different target sam-
ples. Therefore, DAM can be treated as a special case of our work by using the
same classifiers for all test samples in (15).
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5 Experiments

In this section, we evaluate our low-rank exemplar-SVMs (LRE-SVMs) approach
for domain generalization and domain adaptation, respectively.

5.1 Experimental Setup

Following the work in [15], we use the Office-Caltech dataset [28,16] for visual
object recognition and the IXMAS dataset [30] for multi-view action recognition.

Office-Caltech [28,16] dataset contains the images from four domains de-
noted by A, C, D, and W, in which the images are from Amazon, Caltech-256,
and two more datasets captured with digital SLR camera and webcam, respec-
tively. The ten common categories among the 4 domains are utilized in our eval-
uation. We extract the DeCAF6 feature [9] for the images in the Office-Caltech
dataset, which has achieved promising results in visual recognition.

IXMAS dataset [30] contains the videos from eleven actions captured by
five cameras (Cam 0, Cam 1, . . . , Cam 4) from different viewpoints. Each of
the eleven actions is performed three times by twelve actors. To exclude the
irregularly performed actions, we keep the first five actions (check watch, cross
arms, scratch head, sit down, get up) performed by six actors (Alba, Andreas,
Daniel, Hedlena, Julien, Nicolas), as suggested in [15]. We extract the dense
trajectories features [29] from the videos, and use K-means clustering to build
a codebook with 1, 000 clusters for each of the five descriptors (i.e., trajectory,
HOG, HOF, MBHx, MBHy). The bag-of-words features are then concatenated
to a 5, 000 dimensional feature for each video sequence.

Following [15], we treat the images from different sources in the Office-Caltech
dataset as different domains, and treat the videos from different viewpoints in
the IXMAS dataset as different domains, respectively. In our experiments, we
mix several domains as the source domain for training the classifiers and use
the remaining domains as the target domain for testing. For the domain gener-
alization task, the samples from the target domain are not available during the
training process. For the domain adaptation task, the unlabeled samples from
the target domain can be used to reduce the domain distribution mismatch in
the training process.

We compare our low-rank exemplar-SVMs with several state-of-the-art unsu-
pervised domain adaptation methods, as well as the methods specifically pro-
posed for discovering the latent domains. Note that our approach does not require
domain labels for both domain generalization and domain adaptation tasks.

5.2 Domain Generalization

We first evaluate our low-rank exemplar-SVMs (LRE-SVMs) for domain gen-
eralization. We compare our proposed method with the domain generalization
method by undoing dataset bias (Undo-Bias) in [22], and the latent domain
discovering methods [20,15]. We additionally report the results from the dis-
criminative sub-categorization(Sub-C) method [19], as it can also be applied to
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Table 1. Recognition accuracies (%) of different methods for domain generalization.
Our LRE-SVMs approach does not require domain labels or target domain data during
the training process. The best results are denoted in boldface.

Source A,C D,W C,D,W Cam 0,1 Cam 2,3,4 Cam 0,1,2,3

Target D,W A,C A Cam 2,3,4 Cam 0,1 Cam 4

SVM 82.68 76.06 90.73 71.70 63.83 56.61
Sub-C [19] 82.61 78.65 90.75 78.11 76.90 64.04

Undo-Bias [22] 80.49 69.98 90.98 69.03 60.56 56.84

[20](Ensemble) 79.23 68.06 80.75 71.55 51.02 49.70
[20](Match) 71.26 61.42 72.03 63.81 60.04 48.91

[15](Ensemble) 84.01 77.11 91.65 75.04 68.98 57.64
[15](Match) 80.63 76.52 90.84 71.59 60.73 55.37

E-SVMs 82.73 80.85 91.47 76.86 68.04 72.98
LRE-SVMs 84.59 81.17 91.87 79.96 80.15 74.97

our application. As the Undo-Bias method [22] requires the domain label infor-
mation, we provide the groundtruth domain labels to train the classifier for this
method. For all other methods, we mix multiple domains as the source domain
for training the classifiers.

For the latent domain discovering methods [20,15], after partitioning the
source domain data into different domains using their methods, we train an
SVM classifier on each domain, and then fuse those classifiers for predicting the
test samples. We employ two strategies to fuse the learnt classifiers as suggested
in [15], which are referred to as the ensemble strategy and the match strategy,
respectively. The ensemble strategy is to re-weight the decision values from dif-
ferent SVM classifiers by using the domain probabilities learnt with the method
in [20]. In the match strategy, we first select the most relevant domain based on
the MMD criterion, and then use the SVM classifier from this domain to predict
the test samples.

Moreover, we also report the results from the baseline SVM method, which
is trained by using all training samples in the source domain. The results from
exemplar-SVMs (E-SVMs) are also reported, which is a special case of our pro-
posed LRE-SVMs, and we also use the method in (12) to fuse the selected
top K exemplar classifiers for the prediction. For our method, we empirically
fix K = 5, and C1 = 10C2 for all our experiments. We set the parameters
C2 = 0.01, λ1 = 100, and λ2 = 1000 on the Office-Caltech dataset, and C2 = 1
and λ1 = λ2 = 10 on the IXMAS datast. For baseline methods, we choose the
optimal parameters according to their recognition accuracies on the test dataset.

The experimental results on two datasets are summarized in Table 1. We
observe that the Sub-C method is comparable or better than the SVM method.
The results of Undo-Bias are worse than SVM in most cases even after providing
the ground-truth domain labels. One possible explanation is that there are many
factors (e.g., pose and illumination) interacting in images and videos in complex
ways [15], so even the ground truth domain labels may not be the optimal
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ones for learning classifiers for domain generalization, which is also one of our
motivations for this work.

For the two latent domain discovering method [20,15], the recently published
method by Gong et al. [15] achieves quite competitive results when using the
ensemble strategy (i.e., [15](Ensemble) in Table 1). It achieves better results on
all six cases when compared with SVM, which demonstrates it is beneficial to
discover latent domains in the source domain. However, the method in [20] is
not as effective as [15]. We also observe the match strategy generally achieves
worse results than the ensemble strategy for those latent domain discovering
methods, although the target domain information is used to select the most
relevant discovered source domain in the testing process.

Our proposed LRE-SVMs method achieves the best results in all six cases
on two datasets, which clearly demonstrates the effectiveness of our method by
exploiting the low-rank structure in the source domain for domain generaliza-
tion. We also observe that our special case (i.e., the exemplar-SVMs (E-SVMs)
method) also achieves better results than SVM. Note we also apply the predic-
tion method using (12) for E-SVMs. By selecting the most relevant classifiers,
we combine a subset of exemplar classifiers for predicting each test sample, lead-
ing to good results. By further exploiting the low-rank structure in the source
domain, we implicitly employ the information from latent domains in our LRE-
SVMs. In this way, the selected top K exemplar classifiers are more likely from
the same latent domain that the test sample belongs to. Thus, our LRE-SVMs
method outperforms its special case E-SVMs in all six cases for domain gener-
alization.

5.3 Domain Adaptation

In this section, we further compare our proposed method with the baselines for
the domain adaptation task, in which the unlabeled samples from the target do-
main are available in the training process. For domain adaptation, we adopt the
approach proposed in Section 4.2 to fuse the exemplar classifiers learnt by using
our LRE-SVMs method, and we refer to our approach for domain adaptation
as LRE-SVMs-DA. We take the IXMAS multiview action recognition dataset as
an example to report the results.

We first investigate the state-of-the-art unsupervised domain adaptation
methods, including Kernel Mean Matching (KMM) [21], Sampling Geodesic
Flow (SGF) [17], Geodesic Flow Kernel (GFK) [16], Selective Transfer Ma-
chine(STM) [8], Domain Invariant Projection (DIP) [2], and Subspace Alignment
(SA) [14]. For all those methods, we combine the videos captured from multiple
cameras to form one combined source domain, and use the remaining samples as
the target domain. Then we apply all the methods for domain adaptation. For
the feature-based approaches (i.e., SGF, GFK, DIP and SA), we train an SVM
classifier after obtaining the domain invariant features/kernels with those meth-
ods. We also select the best parameters for those baseline methods according to
the test results.
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Table 2. Recognition accuracies (%) of different methods for domain adaptation. The
best results are denoted in boldface.

Source Cam 0,1 Cam 2,3,4 Cam 0,1,2,3

Target Cam 2,3,4 Cam 0,1 Cam 4

SVM 71.70 63.83 56.61

KMM 73.92 42.22 52.57
SGF 60.37 69.04 28.66
GFK 64.87 55.53 42.16
STM 68.69 70.53 51.05
DIP 65.20 70.03 62.92
SA 73.35 77.92 49.59

GFK
(latent)

[20] (Match) 61.33 58.77 46.62
[20] (Ensemble) 65.32 55.01 42.09
[15] (Match) 65.32 64.43 47.22
[15] (Ensemble) 69.12 68.87 51.30

SA
(latent)

[20] (Match) 58.49 56.27 55.87
[20] (Ensemble) 63.01 62.05 62.69
[15] (Match) 66.27 67.00 63.01
[15] (Ensemble) 71.04 76.64 72.26

DAM
(latent)

[20] 77.92 76.99 53.76
[15] 77.32 73.94 62.47

LRE-SVMs-DA 81.79 82.43 75.26

The results of those baseline methods are reported in Table 2. We also include
the baseline SVM method trained by using all the source domain samples for
the comparison. The cross-view action recognition is a challenging task. As a
result, most unsupervised domain adaptation methods cannot achieve promising
results on this dataset, and they are worse than SVM in many cases. The recently
proposed method SA [14] and DIP [2] achieves relatively better results, which
are better than SVM on two out of three cases.

We further investigate the latent domain discovering methods [20,15]. We use
their methods to divide the source domain into several latent domains. Then,
we follow [15] to perform the GFK [16] method between each discovered latent
domain and the target domain to learn a new kernel for reducing the domain
distribution mismatch, and train SVM classifiers using the learnt kernels. Then
we also use the two strategies (i.e., ensemble and match) to fuse the SVM classi-
fiers learnt from different latent domains. Moreover, as the SA method achieves
better results than GFK on the combined source domain, we further use the
SA method to replace the GFK method for reducing the domain distribution
mismatch between each latent domain and the target domain. The other steps
are as the same as those when using the GFK method. We report the results
using latent domain discovering methods [20,15] combined with GFK and SA in
Table 2, which are denoted as GFK(latent) and SA(latent), respectively. As our
method is also related to the DAM method [13], we also report the results of the
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DAM method by treating the discovered latent domains with [20,15] as multiple
source domains, which is referred to as DAM(latent).

From Table 2, we observe GFK(latent) using the latent domains discovered
by [15] is generally better when compared with GFK(latent) using the latent
domains discovered by [20]. By using the latent domains discovered by [15],
the results of GFK(latent) using both match and ensemble strategies are better
than those of GFK on the combined source domain. However, most results from
GFK(latent) are still worse than SVM, possibly because the GFK method cannot
effectively handle the domain distribution mismatch between each discovered
latent domain and the target domain. When using the SA method to replace
GFK, we observe the results from SA(latent) in all three cases are improved
when compared with their corresponding results from GFK(latent) by using
the latent domains discovered by [15]. Moreover, we also observe DAM(latent)
outperforms SVM in all cases or most cases when using the latent source domains
discovered by [15] or [20].

Our method achieves the best results in all three cases, which again demon-
strates the effectiveness of our proposed LRE-SVMs-DA for exploiting the low-
rank structure in the source domain. Moreover, our method LRE-SVMs-DA
outperforms LRE-SVMs on three cases (see Table 1). Note LRE-SVMs does not
use the target domain unlabeled samples during the training process. The re-
sults further demonstrate the effectiveness of our domain adaptation approach
LRE-SVMs-DA for coping with the domain distribution mismatch in the domain
adaptation task.

6 Conclusions

In this paper, we have proposed a new method called Low-rank Exemplar-SVMs
(LRE-SVMs) for domain generalization by exploiting the low-rank structure of
positive training samples from multiple latent source domains. Based on the re-
cent work on exemplar-SVMs, we propose to exploit the low-rank structure in the
source domain by introducing a nuclear-norm based regularizer on the likelihood
matrix consisting of the likelihoods of all positive samples from all exemplar clas-
sifiers. To further handle the domain distribution mismatch between the training
and test data,we further develop an effectivemethod to re-weight the selected set of
exemplar classifiers based on the Maximum Mean Discrepancy (MMD) criterion,
and extend the Domain AdaptationMachine (DAM) method to learn a better tar-
get classifier. The comprehensive experiments have demonstrated the effectiveness
of our approach for domain generalization and domain adaptation.
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29. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion bound-
ary descriptors for action recognition. International Journal of Computer Vi-
sion 103(1), 60–79 (2013)

30. Weinland, D., Boyer, E., Ronfard, R.: Action recognition from arbitrary views
using 3d exemplars. In: ICCV (2007)

31. Xiao, S., Tan, M., Xu, D.: Weighted block-sparse low rank representation for face
clustering in videos. In: ECCV (2014)

32. Xu, X., Tsang, I.W., Xu, D.: Soft margin multiple kernel learning. T-NN 24(5),
749–761 (2013)


	Exploiting Low-Rank Structure from Latent Domains for Domain Generalization
	Introduction
	Related Work
	Low-Rank Exemplar-SVMs
	Formulation
	Optimization

	Ensemble Exemplar Classifiers
	Domain Generalization
	Domain Adaptation

	Experiments
	Experimental Setup
	Domain Generalization
	Domain Adaptation

	Conclusions


